
www.manaraa.com

Intl. Journal of Human–Computer Interaction, 29: 743–763, 2013
Copyright © Taylor & Francis Group, LLC
ISSN: 1044-7318 print / 1532-7590 online
DOI: 10.1080/10447318.2013.773876

How Does Software Visualization Contribute to Software
Comprehension? A Grounded Theory Approach

Hacı Ali Duru1, Murat Perit Çakır2, and Veysi İşler2

1Turkish Military Academy, Ankara, Turkey
2Middle East Technical University, Ankara, Turkey

Despite their ability to synthesize vast amounts of information,
software visualization tools are not widely adopted in the software
engineering industry. In an effort to investigate the underlying
reasons, we conducted a usability study to investigate the affor-
dances of software visualization techniques for the maintenance
of complex software systems. Expert programmers were asked to
carry out programming tasks with or without using a software
visualization tool while their screens and eye gaze patterns were
recorded. Statistical analysis of task performance data showed
that participants who used the software visualization tool outper-
formed the control group in terms of task completion time and
accuracy. However, quantitative analysis of performance measures
did not reveal in what ways software visualizations contributed
to this improvement. In an effort to identify the cognitive strate-
gies that underlie this quantitative performance difference, process
models grounded in qualitative analysis of eye-tracking data were
constructed. The process models indicated that software visualiza-
tions guided the subjects in the experiment group toward following
specific software comprehension strategies, which account for the
difference observed in task performance data.

1. INTRODUCTION
Modern software systems have considerably grown in size,

become highly integrated across various platforms, and hence
exhibit an increasingly complex structure. Given the fact that
software industry has a high turnover rate and software is
often obliged to provide uninterrupted service in a competitive
environment, maintaining software has become increasingly
difficult over the past years. In particular, up to 80% of the soft-
ware life cycle costs are maintenance related, and nearly half of
that maintenance budget is used for understanding the source
code (Telea, Ersoy, & Voinea, 2010).

We thank the TAF-METU Modeling and Simulation Center
and the METU CEIT Eye Tracking Lab for their support and to
SMACCHIA.COM S.A.R.L for making the full version of NDEPEND
available to us to conduct a usability study.

Address correspondence to Murat Perit Çakır, Department of
Cognitive Science, Informatics Institute, Middle East Technical
University, Universiteler Mah., Dumlupınar Bulvarı No:1, Cankaya,
Ankara, 06800, Turkey. E-mail: perit@metu.edu.tr

Jun, Landry, and Salvendy (2011) stated that “the goal of
computer supported and interactive visual representations is
to amplify cognition where they can help facilitate analyti-
cal reasoning, support decision making, and allow users to
gain insight into complex problems” (p. 348). As a branch of
Visual Analytics, software visualization tools also allow users
to synthesize and make sense of vast amounts of informa-
tion regarding the inner organization of software modules and
their interaction with each other. Such information is vital for
conducting high-cost operations such as software maintenance,
which requires a thorough understanding of existing source
code. However, despite the high percentage of maintenance
costs, the utility of software visualization in the industry is still
in question. In particular, whether software visualization has a
positive effect on software comprehension has been a contro-
versial topic (Bessey et al., 2010; Telea et al., 2010; Umphressa,
Hendrixa, Cross, & Maghsoodloob, 2006).

Revealing how software visualization may contribute to
software understanding requires a systematic investigation of
the relationship between cognitive processes underlying soft-
ware comprehension and the software visualization techniques.
Usability studies that focus on this relationship tend to rely on
task performance metrics and retrospective questions to assess
the level of comprehension aided by visualizations. Kagdi,
Yusuf, and Maletic (2007) termed such measures as “black box”
evaluations because they capture only the final outcome of the
software comprehension process. These measures are useful for
identifying whether software visualization has a positive effect
on software comprehension. However, such black box evalua-
tions do not reveal how visualizations are used in practice and
how their use may lead to a deeper understanding of a source
code’s structure and organization.

Software visualizations aim to display structures within the
source code that may not be self-evident, so that program-
mers can notice and attend to them. Thus, it is important to
observe how particular visualization strategies direct program-
mers’ attention in a complex information space. Eye-tracking
studies that focus on the process in which visualizations are
used have the potential to reveal the details of the software
comprehension process mediated by visualizations. However,

743



www.manaraa.com

744 H. A. DURU ET AL.

despite this potential, there are only a few studies that utilize
eye-tracking technology in this context (Bednarik & Tukiainen,
2006). Existing eye-tracking studies tend to rely on quantita-
tive measures derived from eye-tracking data, such as fixation
sequences and scan paths elicited by the visualizations while
completing a programming task. For instance, Kagdi et al.’s
(2007) study focuses on the fixations and scan-paths elicited
by Unified Modeling Language diagrams while programmers
were working on them. Such quantitative features are useful in
terms of revealing microlevel details of visual information pro-
cessing and which areas of interest received the most attention.
However, scaling this microlevel analysis up to the compre-
hension of broader programming structures that are particularly
relevant to more realistic software maintenance task scenarios
remains to be a challenge.

In this study we used eye-tracking technology to record
expert programmers’ eye gaze patterns and screen actions while
they completed seven software maintenance tasks with or with-
out using a software visualization tool. The software to be
maintained was a web-based e-commerce application that is
implemented in the Microsoft .Net framework. In an effort to
address the methodological gap between outcome measures
and the microlevel features provided by the eye tracker, we
employed a grounded theory approach to conduct a qualita-
tive analysis of the various ways our subjects attempted the
tasks in both conditions. Based on our qualitative analysis of
the screen recordings overlaid with fixation sequences, we con-
structed process models of each group’s activities in an effort
to identify the differences between the two interface condi-
tions. Statistical analysis of outcome measures showed that the
experimental group that made use of the software visualiza-
tion tool outperformed the control group. Most important, our
qualitative analysis suggests that this difference is due to the
affordances of the visualizations, which guided the subjects
in the experiment group toward following effective software
comprehension strategies that ultimately contributed to their
success.

The rest of this article is structured as follows. Section 2
provides a background on related work in the software com-
prehension and visualization literature. Section 3 introduces the
materials and the methods used in the study. Section 4 presents
the findings of our quantitative and qualitative analyses. Finally,
the article concludes with a discussion of these findings.

1.1. Related Work
Software maintenance requires programmers to comprehend

parts of the source code relevant to their task. Because this
study is concerned with identifying the contribution of software
visualization techniques to software maintenance processes,
a review of related literature in software comprehension and
software visualization is provided below to set the conceptual
background of the study.

2. SOFTWARE COMPREHENSION
Corritore and Wiedenbeck (1991) defined software compre-

hension as “identifying important program parts and inferring
relationships between them” (p. 199). Software comprehension
literature primarily focuses on identifying the types of cog-
nitive strategies programmers employ while they try to solve
programming-related problems. Studies conducted with soft-
ware maintainers have found that programmers use different
program comprehension strategies depending on a number of
parameters, such as level of expertise, programming style, per-
sonality characteristics, the nature of the program, and the pro-
gramming language used (Karahasanovic, Levine, & Thomas,
2007).

Most frequently mentioned program comprehension strate-
gies in the literature involve top-down, bottom-up, and interac-
tive approaches. In the top-down strategy, programmers devise
assumptions about the overall objectives of the program and
then investigate every subsection of the program in light of
those holistic assumptions (Brooks, 1983; Soloway, Adelson,
& Ehrlich, 1988). In the bottom-up model, programmers start
by reading code statements until they construct a high-level
mental representation of the program (Karahasanovic et al.,
2007). Finally, interactive models combine aspects of top-down
and bottom-up strategies during software comprehension. For
instance, von Mayrhauser and Vans (1996) argued that under-
standing of software is developed simultaneously at several
levels of abstractions while programmers freely switch between
top-down, bottom-up, and knowledge-based strategies (Storey,
Wong, & Muller, 2000).

Novelty of the software is another important factor that
influences the software comprehension strategies chosen by
the programmers. For instance, Shaft and Vessey (1995) and
von Mayrhauser and Vans (1996) proposed that programmers
employ a top-down, goal-oriented, hypothesis-driven approach
for software comprehension while they are working in a famil-
iar domain in which they recognize a large number of plans or
design patterns. On the other hand, Corritore and Wiedenbeck
(2001) found that programmers tend to use the bottom-up strat-
egy if the program is novel to them. These authors also report
that in an industrial-sized software consisting of tens or hun-
dreds of thousands of lines of code, programmers may switch
between top-down and bottom-up approaches frequently within
the same program, because their state of knowledge about the
domain varies across different parts of the software (Corritore
& Wiedenbeck, 2001).

The nature of the maintenance task carried out on a program
and the cognitive complexity of the software also influence
which comprehension strategies are employed by the program-
mers (Koenemann & Robertson, 1991). For instance, program-
mers tend to use the bottom-up strategy in a task like bug fixing,
whereas when they perform a task such as adapting software to a
new platform, programmers tend to use the top-down approach
(von Mayrhauser & Vans, 1996).



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 745

The interplay between the type of the task and the complex-
ity of the software requires programmers to develop a level of
understanding that will be adequate for the purposes at hand.
This led Littman, Pinto, Letovski, and Soloway (1986) to pro-
pose two comprehension strategies with respect to the breadth
of comprehension they entail, namely, the “systematic” and the
“as needed” approaches. In the systematic approach program-
mers try to develop a broad understanding of the program. The
authors claim that programmers who use this approach tend to
be more successful in accomplishing most maintenance tasks.
In the as needed approach, programmers don’t aim to under-
stand the whole design and pragmatically attend to only those
parts that are deemed relevant to the task at hand.

Our review suggests that successful software maintenance
is closely related to effective use of software comprehension
strategies. It is essential for a programmer to develop an ade-
quate understanding of how the software carries out its main
functionalities as well as how the modular organization of
the code and the dependencies built in between components
realize those functionalities. Software comprehension literature
primarily focuses on how programmers develop such an under-
standing by using conventional tools offered by typical software
development environments. Our review identified some of the
strategies frequently used by programmers in response to vari-
ous factors such as the cognitive complexity and the size of the
source code as well as the specifics of the task and the program-
ming environment used. The strategies covered in this section
are used as an explanatory framework to characterize the partic-
ipants’ actions we observed during our experiment. In the next
section, we review software visualization techniques that aim to
help programmers execute such strategies in an effective way.

2.1. Software Visualization
Software visualization is a special application area of visual

analytics that is concerned with the interactive analysis of soft-
ware mediated by graphical tools and representations (Grant,
1999). Software visualization techniques may involve the use
of interactive computer graphics, animation, cinematography,
and visual arts to aid the understanding of computer programs
(Price, Baecker, & Small, 1993). Comprehensive reviews of
software visualization literature identified program and algo-
rithm visualization as the two main threads among existing
software visualization applications (Lemieux & Salois, 2006;
Price et al., 1993).

Program visualization refers to the visualization of data
structures and their dependencies with static and/or dynamic
representations. Static code visualizations provide a graphical
demonstration of the routines and the control flow in soft-
ware (Wettel & Lanza, 2008). Such visualizations usually rely
on certain metaphors to aid the programmers’ comprehension
of the source code. For example, Wettel and Lanza (2008)
used the city metaphor by symbolizing the program units as
city blocks and buildings. Dynamic visualizations animate such
static representations by dynamically coloring or altering them.

For instance, the source code is colored or highlighted while
the program is running to highlight what part of the code is
executed at a given time and what values are bound to specific
variables of interest. Such animated visualizations aim to help
programmers observe how the information flows among the
modules that constitute the source code. Finally, algorithm visu-
alization is concerned with providing a high-level description
of what a program does, rather than the specific way a pro-
gram is implemented in a specific language (Lemieux & Salois,
2006). In other words, algorithm visualization aims to reveal
the reasoning realized by the sequence of actions that define
the functionality of the software at an abstract level. Therefore,
the visualizations used may not necessarily correspond to actual
data or instructions implemented in software.

Several studies have investigated in what ways software
visualization tools influence software comprehension processes,
albeit with conflicting results (Storey et al., 2000, Voinea, Telea,
& Wijk, 2005). For instance, the study conducted by Petre
(2010) considers the relationship between mental imagery and
software visualization in a professional, high-performance soft-
ware development context. Petre observed that experts tend not
to use generic visualization tools, because they do not suffi-
ciently reveal the design rationale underlying the organization
of source code. Petre also reported that experts use custom
visualization tools that they think better embody their domain
knowledge, which may differ from the tools other experts use.
Telea et al.’s (2010) study also suggests that software visualiza-
tion tools have limited adoption in the IT industry. The study
relied on interview data gathered while authors participated in
several software development projects. Stakeholders’ comments
suggested that they had different software visualization needs
which were not adequately supported by existing visualization
tools.

There are also empirical findings that highlight the positive
contribution of software visualization on software compre-
hension. Koschke and Diehl’s (2002) study provides strong
evidence in favor of the utility of software visualization tools
in the context of reverse engineering. Moreover, Umphressa
et al. (2006) reported that control structure diagrams and the
complexity profile graph that abstract away the intricacies
of the source code positively affect program comprehension.
Such studies highlight the potential of software visualization
techniques in task contexts where programmers need to com-
prehend the structure and organization of complex software to
do maintenance or reverse engineering.

Software visualization techniques just mentioned are
designed to address different cognitive needs during program
comprehension. Mixed findings of existing studies led Storey
et al. (2000) to the conclusion that a software visualization tool
should provide support for different comprehension strategies
such as top-down, bottom-up, or as needed. One type of visual-
ization is inadequate for catering to all software comprehension
needs (Maletic, Marcus, & Collard, 2002). Such tools should
not only support multiple comprehension strategies but also



www.manaraa.com

746 H. A. DURU ET AL.

allow seamless transitions between comprehension strategies
(Storey et al., 2000).

Existing studies on the relationship between software visu-
alization and comprehension report mixed findings. Most stud-
ies rely on quantitative performance measures, postexperiment
questionnaires, and interviews with stakeholders (Dunsmore,
Roper, & Wood, 2000), and thus do not reveal the moment-
by-moment details of the process through which programmers
interact with visualizations in practice. In addition to this,
the task context and the complexity of the software consid-
ered vary across studies, and only a small number studies
focus on software maintenance tasks performed at a realis-
tic scale. Therefore, there is a need for systematic studies of
the microlevel details to reveal in what practical ways soft-
ware visualization contributes to software comprehension. In an
effort to address this need, we conducted a controlled eye-
tracking study that combined quantitative and qualitative meth-
ods to investigate how programmers made use of visualizations
during a realistic software maintenance task.

3. MATERIALS AND METHODS

3.1. Experimental Design
Thirteen software engineers who have on average 10 years

of software development experience were recruited for this
study. Proctor, Vu, and Salvendy (2002) argued that novices
and experts are distinguished in terms of the knowledge struc-
tures or mental models they possess in a domain, which renders
novices’ reasoning rather shallow and less functional when
compared to the experts. For this reason, participants who were
similar in terms of their level of education and programming
expertise were selected for this study. Subjects in the exper-
iment group used the NDEPEND software visualization tool
(described in the next section) to work on the program compre-
hension and maintenance tasks, whereas the control group relied
on the standard graphical user interface provided by Visual
Studio .NET to navigate the source code. Five participants were
assigned to the control group, and eight subjects were assigned
to the experiment group. While the participants were working
on the software comprehension and maintenance tasks, their
eye-gaze movements and screens were recorded with the Tobii
T1750 eye-tracking system. Eye fixations were overlaid on the
screen recordings by using the Tobi Studio eye-tracking analysis
software.

Due to the constraints on subjects’ availability and the neces-
sity to conduct the study in a controlled lab setting, we opted
for analyzing program comprehension behavior in a task envi-
ronment, which is smaller in scale as compared to an industry
grade software application. On the other hand, the software
was complex enough to provide a realistic setting for the
kinds of maintenance operations typically performed in the
industry. To set the task environment, we developed an e-
commerce application (∼1000 LOC) in Microsoft ASP.NET
that is designed to manage the product inventory and orders

received by a small-scale business enterprise. The application
reflects typical features of most e-commerce applications such
as displaying a number of products in the inventory, query-
ing for products in the database, adding selected products to
an order list, and processing purchases. Thus, the experimental
application has a modular complexity comparable to a real-
world web application, which allowed us to design realistic
program comprehension and maintenance tasks that can be
studied in an experimental setting.

During the experiment, subjects were asked to perform seven
programming tasks on our e-commerce application. Participants
in the experiment group were provided a brief tutorial about the
main features of the NDEPEND visualization tool before the
experiment, as none of them had used this tool before. No train-
ing was provided to the control group members, because they
were already expert users of the Visual Studio .NET integrated
development environment (IDE). Subsequently, the participants
were asked to complete the seven experimental tasks described
next:

• Task 1 (3 min): Find the code portion in which the
customer list is filled.

• Task 2 (3 min): Find the code portion in which the
product list is filled and update the code for the list to
display six products instead of five by default.

• Task 3 (4 min): In the products page, when the users
enter the name of a product and press the “search” but-
ton, the website returns only the exact search results.
However, they should also see those products whose
names partially match the search term. Find the pro-
gram fragment related to this case and update the code
so that partial matches are also displayed.

• Task 4 (4 min): When searching for a customer record,
users can use the name and area properties only. Add a
new element to the search form, so that users can also
search by last name.

• Task 5 (4 min): The “phone” information of the cus-
tomer will not be required in the registration form
anymore. Do the required changes for this purpose.

• Task 6 (7 min): Execute the program and follow the
instructions below.

◦ Log in to the system.
◦ Go to the “orders” page.
◦ Press the “Select Customer” button.
◦ Select a customer from the customer list.
◦ Press the “Add Item” button.
◦ Select the product having a price of 18,09.
◦ Set the quantity of the products that will be purchased

as 2.
◦ Press the “Continue Order” button.
◦ See the total price field. You should see 36 instead of

“36,18.”



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 747

◦ You explored a bug which is a computation error in the
fractional part of the price. Locate the bug in the source
code and fix it accordingly.

• Task 7 (3 min): Find the program portion in which the
product picture is read from the database and loaded to
the screen.

To control the total duration of the experiment and the unifor-
mity of the scale of measurements, a time out was set for every
task by taking into account each task’s difficulty and its esti-
mated duration. Each experimental session lasted about 1 hr.
The participants in the visualization group received a brief tuto-
rial on the basic features of NDEPEND and how it can be used
in conjunction with Visual Studio before the experiment.

Similar to Sim and Storey’s (2000) study, we aimed to design
tasks that are representative of a range of tasks a web developer
would face in his or her daily work. For example, in our experi-
ment participants were asked to repair a defect/bug or to add a
new feature, rather than simply performing data flow analysis.
Consequently, carrying out these tasks required participants to
develop an understanding of the source code, which provided us
a perspicuous setting to observe the impact of software visual-
ization tools on software comprehension. After the experiment,
a short semistructured interview was administered where partic-
ipants were asked about their opinions regarding the difficulties
they experienced with the tool and the tasks.

3.2. NDEPEND Software Visualization Tool
In this study a commercially available software visual-

ization tool named NDEPEND is used, which includes sev-
eral visualization techniques for representing Microsoft Visual
Studio.NET programs. NDEPEND is specifically designed to
help programmers analyze and explore software written in the
Visual Studio.NET framework. Using NDEPEND, software
developers can

• Evaluate the relative size and complexity of code
segments based on various code metrics (e.g. lines
of codes, cyclomatic complexity, number of children,
etc.) and levels (methods, types, etc.) with a treemap
that implements the block metaphor (Figure 1).

• Track program flow by using graphical demonstrations
of dependencies in the code (Figure 2).

• Demonstrate the complex call relationships of the pro-
gram with the matrix view (Figure 3).

• Compute customized search queries and code metrics
with a special query language (Code Query Language-
CQL).

During the experiments subjects in the experiment group partic-
ularly focused on the treemap and program flow visualizations
provided by NDEPEND. Participants also had access to the
Visual Studio environment because maintenance tasks required
subjects to do some changes in the source code and test the
updated application.

3.3. Visual Studio.NET as a Standard Software
Development Environment

The control group used the standard Visual Studio.NET
2008 IDE to navigate through the source code. Visual
Studio.NET offers developers an interface called “solution
explorer,” which provides a tree-based hierarchical representa-
tion of the folder organization within the source code (Figure 4).
Users can inspect the organization of the source code by nav-
igating through the folder hierarchy and read the contents
of individual files across multiple tabs. The tabs provide a
color-coded view of the source code together with hyperlinked
class references. Subjects in the control group relied on these
resources and the default debugger to work on the maintenance
tasks.

3.4. Grounded Theory Methodology
In addition to quantitative analysis of outcome measures,

we employed a grounded theory (Glaser & Strauss, 1967)
approach to perform a qualitative analysis of the screen record-
ings collected during the experiment. Overall, we employed a
mixed methodology in an effort to better capture and describe
the patterns of use evidenced in the video recordings of both
groups of participants. Qualitative research is directed primar-
ily at collecting and analyzing nonnumeric data with the aim
of achieving information depth rather than breadth (Coleman

FIG. 1. A block visualization of the source code (color figure available online).



www.manaraa.com

748 H. A. DURU ET AL.

FIG. 2. Code flow and dependencies among modules are captured by the graph visualization (color figure available online).

FIG. 3. Matrix visualization of the call relationships (color figure available online).



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 749

FIG. 4. Visual Studio.NET 2008 Integrated Development Environment. The solution explorer is located on the right column (color figure available online).

& O’Connor, 2007). Thus, as a qualitative research paradigm,
the grounded theory approach is not particularly concerned
with the statistical modeling of the data, but it focuses on
uncovering how the observed activity is structured and orga-
nized through systematic coding of actions at various levels of
granularity.

Grounded theory methodology has been employed in infor-
mation systems research to study various aspects of system
design and use, particularly to conduct ethnographic studies of
the work setting in which software engineers develop software.
Existing studies focus on various aspects of software devel-
opment practice, such as the influence of software testing and
communication practices on the development process and the
quality of the product (Taipale & Smolander, 2006), when and
why software process improvement practices are employed in
the work setting (Coleman & O’Connor, 2007), what type of
questions programmers raise when they evolve a code base,
how are those questions related to the specific problem context,
and what tools they use to address them (Sillito, Murphy, & de
Volder, 2006).

Information visualization is another domain relevant to this
study in which grounded theory methodology has been fruit-
fully employed. Such studies focus on how visualizations of
data are used to coordinate decision-making processes in the
context of building design (Tory & French, 2008) and sales
forecasting (Asimakopoulos, Fildes, & Dix, 2009). Grounded
theory methodology is also employed for developing a

broader evaluation framework to conduct contextual analysis of
information visualization systems (Zuk, Collins, & Carpendale,
2008). Such studies provide in-depth insights regarding how
visualizations contribute to the work practices in the respective
domains. Nevertheless, in none of the aforementioned stud-
ies grounded theory has been employed specifically to study
how software visualization techniques mediate software com-
prehension strategies of programmers. Moreover, these studies
primarily rely upon field observations and interviews as pri-
mary data sources. In this study we aim to build on existing
applications of grounded theory in the information systems and
usability literature by conducting a grounded theory analysis of
video recordings overlaid with the participants’ eye fixations.

3.5. Data Analysis
Both quantitative and qualitative methods were employed

for the analysis of collected data. The experimental groups
were compared in terms of performance outcome measures
such as accuracy and task completion times to observe if the
visualization had a positive effect on software maintenance
performance. IBM SPSS version 19 was used to run the statis-
tical analysis. In addition to this, a grounded theory approach
was employed to identify in what specific ways visualizations
contribute to the programmers’ task performance, based on a
close analysis of the participants’ actions and eye recordings.
Qualitative analysis aims to elaborate on the patterns indicated
by our quantitative findings.



www.manaraa.com

750 H. A. DURU ET AL.

3.6. Quantitative Analysis Results
A two-way mixed analysis of variance (ANOVA) performed

on task accuracy, where task and group are the within- and
between-subjects variables, respectively, found a significant
main effect of experimental condition, F(1, 11) = 11.638, p <

.01, η2 = 0.514, and a significant main effect of task, F(6,
66) = 4.619, p < .01, η2 = 0.296. The means plot in Figure 5
indicates that the visualization group had higher accuracy per-
centage as compared to the control group across all tasks. The
combined accuracy of the experiment group over all tasks was
85%, whereas the control group had a combined accuracy value
of %46.

The means plot in Figure 5 suggests that participants’ per-
formance in both groups had improved as they progressed
through the maintenance tasks in time. In other words, as the
participants in both groups become familiar with the organiza-
tion of the source code, the task accuracy has increased. The
only exception to this pattern is Task 4, which has the low-
est average accuracy percentage as compared to other tasks.
Sidak corrected post hoc tests found that the accuracy per-
centage observed in Task 4 is significantly lower than Tasks
6 (M difference = − 0.525, p < .05) and 7 (M difference =
–0.525, p < .05). Task 4 turned out to be particularly diffi-
cult for the participants in the control group, as no one could
complete the task correctly in the allotted time. The decrease in
the performance of the visualization group on Task 4 was much
smaller.

The means plot in Figure 5 also shows how the learning
curves associated with both groups differ from each other.
Participants in the experimental group quickly developed an
understanding of the source code and reached perfect accuracy
toward the end of the experiment. The improvement in the con-
trol group was relatively slower. The interaction effect of group

FIG. 5. Means plot for accuracy percentage across experimental conditions
and software maintenance tasks (color figure available online).

and task was not significant, F(6, 66) = 1.258, p > .05, which
indicates that the participants in the visualization group consis-
tently performed better than the participants in the control group
across all tasks.

None of the participants were familiar with the visualization
tools provided by NDEPEND, so one might expect to observe
longer task completion times because subjects had to make
sense of these new forms of representations in relation to the
source code. To observe the influence of software visualization
on task completion times, a two-way mixed ANOVA was con-
ducted with group and task as the between- and within-subjects
variables, respectively. We only considered successfully com-
pleted tasks and excluded those tasks where less than 20% of
the subjects could complete the task.

The ANOVA results indicated that there is a significant main
effect of task type on task completion times, F(3, 18) = 5.962,
p < .01, η2 = 0.498. Planned repeated contrasts between levels
of tasks indicated that subjects spent on average significantly
more time on Task 5 as compared to 6, F(1, 6) = 11.762, p <

.05, η2 = 0.662. Planned repeated contrasts also found a sig-
nificant difference between Tasks 6 and 7, F(1, 6) = 8.462,
p < .05, η2 = 0.585. Hence, some of the tasks required par-
ticipants to spend significantly more amount of time to succeed
(see Figure 6).

The effect of group on task completion time was only
marginally significant, F(1, 6) = 5.799, p = .053, η2 = .49,
whereas the interaction effect was not significant, F(3, 18) =
1.602, p > .05. The means plot in Figure 6 suggests that par-
ticipants in the control group took more time to complete Task
3 as compared to the experimental group. Task completion times
for Tasks 5 and 6 were similar across both groups. Finally, the
control group outperformed the visualization group in the last
task.

FIG. 6. Means plot for task completion times across tasks and experimental
groups. Note. Only those tasks where accuracy percentage was higher than 20%
were considered for comparison (color figure available online).



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 751

3.7. Qualitative Analysis Results
A grounded theory approach (Glaser & Strauss, 1967) was

employed to perform a close analysis of the video recordings of
participants’ mouse gestures, typing actions and eye movements
to identify in what specific ways visualizations contributed to
programmers’ task performance. Eye-tracking data was over-
laid over the videos to aid the interpretative analysis of each
subject’s activity during maintenance tasks. Extended fixation
durations were considered as indication of sustained attention
to the vicinity of the objects/graphs on that part of the screen.
Because the interface was dynamically changing while sub-
jects were navigating over the visualizations through the course
of each task, standard techniques such as areas of interest or
heat-map analyses were not conducted on the eye-tracking data.
In particular, our analysis aimed to identify and categorize
the main software comprehension strategies evidenced in the
actions of the participants. The analysis covered a total of 7 ×
13 = 91 video excerpts, which amounts to a total duration of
10 hr of footage.

Initially, the software comprehension behaviors of the par-
ticipants were interpreted to form primitive categories. Table 1
shows a portion of this pre open coding study for Task 4 of two
arbitrarily selected participants. The verbal descriptions of user
actions in both interface conditions aim to capture what fea-
tures users oriented to as resources for action, how they enacted
those resources as part of their search for a solution to the task at
hand, and how they reacted to the consequences of their actions.
Hence, these descriptions resemble Clarke’s (2005) notion of
“situational maps,” which aim to identify a space of relevant
concepts manifested in the data and their semantic relationships
depending on how those concepts are enacted by the partici-
pants. However, our approach to grounded theory also differs
from Clarke’s approach in an important way, because our aim
is to capture the sequential organization of actions evidenced
in the course of participant’s orderly activity. In the subsequent
stages of our qualitative study, the categories identified in this
manner will be linked to each other to uncover the orderliness
of activities across both user groups.

After that, the video excerpts were first transcribed into a
narrative form that summarized the main problem-solving steps
and described where subjects allocated their attention on the
interface. In particular, we focused on how participants deter-
mined the starting point of their analysis, how they found the
relevant code context, how they reasoned about what needs to
be fixed, and what kind of fixes they performed. For instance,
the following paragraphs exemplify the narrative summaries of
the performance of two subjects from each group during Task 4,
which requires participants to add a new text area to an existing
web page to support search by surname.

Experiment group, Participant 5, Task 4. The subject ini-
tially inspects the block visualization of the source code pro-
vided by NPDEND. In this screen he fixates sequentially on
the objects from the top-left corner to the bottom-right. After
getting an overall impression of the source code, he orients to

the dependency graph visualization to follow the program logic.
Once he locates the representation for the “Customer” object, he
makes use of the graph to observe the internal code flow within
the methods of the object. After this point, the subject switches
to the Visual Studio.NET IDE and attempts to match the visual
representations with the program code. He first finds the cus-
tomer object which he examined before in NDEPEND, then
through a systematic investigation of this context he reaches the
“refreshListWithCriteria” method that contains the target code
context to be maintained. Finally, he makes use of the exist-
ing field definitions to add the desired field and successfully
completes the task.

Experiment group, Participant 3, Task 4. Participant exe-
cutes the program to make sense of the flow logic of the related
web page that is required to be maintained. He monitors the
visualization based on his inspection of the program execution
process. Once the subject identifies the relevant objects with the
help of the visualization, he orients to the Solution Explorer to
find where they are defined in the source code. He employs a
systematic understanding strategy to locate the relevant code
context to be maintained. Nevertheless, the subject eventually
gets lost in the source code and runs out of time before he could
do the desired modification to the code.

Control group, Participant 5, Task 4. After a brief inves-
tigation on the Solution Explorer, the participant runs the
program to follow the execution steps for the targeted part of the
software. He identifies “customer.aspx” as the page that needs
to be modified. Then he moves his attention to the solution
explorer window and browses through the class tree to identify
objects that are semantically related to the given task. The sub-
ject inspects the names of the objects to locate the relevant code
segments to be maintained but fails to locate the target context
in the time allotted.

Control group, Participant 2, Task 4. Participant first exe-
cutes the program and navigates to the “customer.aspx” page
through the main menu of webpage. Once he realizes that this
is the page that needs to be modified to add the desired fea-
ture, he switches to the Visual Studio Solution Explorer IDE
and searches for the relevant code context. But he fails to
develop a strategy to find the relevant object that populates this
webpage.

Next, the narrative descriptions just exemplified were further
segmented and categorized through open coding, which aimed
to capture and label recurrent themes/actions observed across
all sessions. Some of the actions interpreted and identified at
this stage include switching to the code view, tracking the code
flow, matching visualizations with the source code, fixating on
specific code segments like an SQL statement or a mathematical
expression, following the program flow, searching for a desired
code fragment with the search utilities of the IDE, getting lost
in the code, and succeeding or failing the task.

In the axial coding stage of our analysis, openly coded soft-
ware comprehension actions for all tasks were consolidated and
generalized under more abstract descriptive categories in an



www.manaraa.com

752 H. A. DURU ET AL.

TABLE 1
Software Comprehension Behavior Categories Observed During All Tasks

Participant 5 (Experiment Group)
Task 4: When searching for a customer record, users can use the name and area properties only. Add a new element to the search
form, so that users can also search by last name.

Time User Action System Response
Candidate for
Categorization

00:00–00:20 The subject initially starts to inspect
the block visualization of the
source code provided by
NPDEND.

NDEPEND application opened
and block visualization
screen is displayed.

Try to match visual
representations with
the program code

00:20–00:27
00:27–00:30
00:30–01:09

He fixates sequentially on the objects
from the top-left corner to the
bottom-right.

01:09–01:14 After getting an overall impression of
the source code, he orients to the
dependency graph visualization to
follow the program logic.

System shows the “dependency
graph” for the program.

01:14–02:07 He inspects the graph and locates the
representation for the “Customer”
object

02:07–02:07 Once he locates the representation
for the “Customer” object, he
makes use of the graph to observe
the internal code flow within the
methods of the object.

System shows the “dependency
graph” of the methods within
the customer object.

02:07–02:13 He clicks on the zoom feature to
have a close view of the graph

System enlarges the dependency
graph.

02:13–04:30 He investigates internal methods of
the object

System scrolls to the method
which is under investigation

04:30 After this point, the subject switches
to the Visual Studio.NET IDE and
attempts to match the visual
representations with the program
code.

Visual Studio.Net Environment
is displayed on the screen

04:30–10:43 First three tasks take place, and then the fourth task is introduced.

10:43–10:55 Fixates over the Solution Explorer

10:55 He finds the customer object which
he examined before in NDEPEND.

10:55 Double-clicks on the “Customer”
object (Searches for the relevant
context in which the solution may
exist)

System switches to the code
view of the “customer” object

Find the desired object
on the solution
explorer

(Continued)



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 753

TABLE 1
(Continued)

Participant 5 (Experiment Group)
Task 4: When searching for a customer record, users can use the name and area properties only. Add a new element to the search
form, so that users can also search by last name.

Time User Action System Response
Candidate for
Categorization

10:55–11:00 Investigates the program flow line by
line in the customer object
beginning from the Page_load
event

System scrolls to the desired
program portion

Follow the “Systematic
Understanding”
strategy to locate the
relevant code context

11:00–11:10 Searches for the desired code in
context by reading and scrolling
down.
Come to “refreshlist” program

portion.

Follow the “Systematic
Understanding”
strategy to locate the
relevant code context

11:10–11:35 Come to “refreshlistwithcriteria”
program portion

Use “Systematic
Understanding”
strategy to find the
desired code line

11:35–13:40 Finally, he makes use of the existing
field definitions to add the desired
field and successfully completes
the task.

System compiles and runs with
success

Success

Participant 2 (Control group)
Task 4: When searching for a customer record, users can use the name and area properties only. Add a new element to the search

form, so that users can also search by last name.

Candidate for
Time User Action System Response Categorization

00:00–12:02 First Three tasks take place, and then the fourth task is introduced.

12:02 Clicks on Visual Studio.Net The System opens the Visual
Studio.Net Environment

12:02–12:36 Explores the diagram by hovering the
mouse over different program
entities.

System shows the name of the
object while the user hovers
the mouse over a node on the
graph.

12:36–13:41 The participant runs the program to
follow the execution steps for the
targeted part of the software.

System runs and shows the
customer search screen. Then
shows the result list according
to given search criteria

Runs the program and
inspects web pages to
identify relevant
objects

(Continued)



www.manaraa.com

754 H. A. DURU ET AL.

TABLE 1
(Continued)

Participant 5 (Experiment Group)
Task 4: When searching for a customer record, users can use the name and area properties only. Add a new element to the search
form, so that users can also search by last name.

Time User Action System Response
Candidate for
Categorization

13:41–14:00 He identifies “customer.aspx” as the
page that needs to be modified.

Investigate the solution
explorer to locate
relevant objects. Object
names are the only
clue (Appropriate
naming is mostly
important)

14:00–14:18 Explores the diagram again by
hovering the mouse over different
program entities.

System shows the name of the
object while the user hovers
the mouse over a node on the
graph

Couldn’t develop a specific
comprehension strategy

14:18 Admit failure Fail

Note. Categories related to the experimental and control group are marked differently.

effort to capture the variety of software comprehension related
actions observed in both experiment groups. The categories
considered for each group that were relevant across all tasks
are displayed in Table 2. These categories allowed us to pre-
pare a summary diagram of each task for each experimental
group.

Next, we applied these codes to the narrative summaries to
produce a sequential representation of the actions performed by
the subjects during each task. Tables 3 and 4 display the coded
sequences corresponding to the performance of each participant
in all tasks in the control and experimental groups, respectively.
The distribution of software understanding strategies employed
by each group in response to specific tasks can be observed
from these tables. The orderliness in the actions of the subjects
in the visualization group allowed us to further organize their
code sequences into three larger segments, as indicated by
the three columns in Table 4. Codes that refer to software
comprehension strategies such as bottom-up, systematic, and as
needed are based on the definitions proposed by related work
in the software comprehension literature.

The next stage of our qualitative analysis involved produc-
ing axial coding graphs, which combine the separate activity
sequences identified for all participants for each task. This
resulted in seven axial coding graphs which summarized the
collective performance of each group over each task. For
instance, Figures 7 and 8 display the axial coding diagrams of
the experiment and control groups respectively for Task 4. The
figures represent the program understanding and program main-
tenance behaviors exhibited by the participants with boxes. The

color-coded connections between boxes reveal how each partic-
ipant moved from one category of action to the other during the
corresponding task. Axial coding graphs aim to make it visible
what software comprehension patterns were exhibited by exper-
iment and control groups during each task, and to what extent
those patterns were similar or different across both groups.

At the final stage of our qualitative analysis, we performed
a selective coding over the axial coding graphs to produce an
overall summary of core categories of the program compre-
hension behaviors exhibited by each group. Selective coding
resulted in a single flowchart for the experiment and control
groups, which are displayed in Figures 9 and 10, respec-
tively. Selective coding graphs provide an abstraction over
task-specific axial coding graphs, which display the specific
software comprehension patterns collectively exhibited by each
group of participants during the entire experiment.

4. DISCUSSION
Our quantitative analysis of outcome measures indicates that

the participants in the visualization group had a higher accuracy
percentage across all tasks. Moreover, although both groups
improved their performance as they become acquainted with
the source code, the participants in the experimental condition
exhibited a steeper learning curve. The difference between the
two groups’ performance was particularly different in Tasks
1, 2, and 4. However, it is not easy to see from the out-
come measures how visualizations contributed to this difference
in practice. When we compared task completion times in the
successful cases, processing the visualizations did not seem to



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 755

TABLE 2
Software Comprehension Behavior Categories Observed During All Tasks

Code Description of Observed Behavior

E1 Find the desired object on the solution explorer
E2 Find the desired object on the NDEPEND interface
E3 Try to match visual representations with the program code
E4 Follow the “Systematic Understanding” strategy to locate the relevant code context
E5 Use “Bottom-up” strategy to find the relevant code context (The write order of the

methods are important)
E6 Use “As Needed” strategy with some hypothesis to find the context
E7 Lead into a wrong path, but quickly bactracks from it
E8 Use “Systematic Understanding” strategy to find the desired code line
E9 Continue using systemmatic strategy and find the context
E10 Fail to develop a strategy to find the desired code line
E11 Use the “Bottom-up” strategy to search for the code line
E12 Success
E13 Fails to complete the task (timeout)
E14 Execute the program and try to understand the flow logic
E15 Search the desired object systemmaticaly on the NDEPEND interface
E16 Use bottom-up strategy to find the relevant code context
E18 Lost in the code context
E19 Use as needed strategy with the help of standard SQL/PL tokens as search keywords
E20 Follow the program flow in NDEPEND
E21 Use mathematical statements as a search phrase to find the desired code segment

C1 Investigate the solution explorer to locate relevant objects. Object names are the only
clue (Appropriate naming is mostly important)

C2 Inspect the solution explorer (evidenced by extended fixation durations)
C3 Couldn’t develop a specific comprehension strategy
C4 Find the context with the bottom-up strategy
C5 Use as needed strategy to follow an inaccurate hypothesis
C6 Lost in the source code
C7 Follow the code flow using systematic software comprehension
C8 Fails to complete the task
C9 Success
C10 Runs the program and inspects web pages to identify relevant objects
C11 Use top down comprehension strategy to explore an irrelevant object due to its

misleading name
C12 Use as-needed strategy with some hypothesis and find the context
C13 Find the desired object in the solution explorer in a short time
C14 Use bottom-up strategy to find the context
C15 Find the desired code fragment with the bottom up strategy
C16 Come to realize that he/she is headed in the wrong way (without developing a specific

comprehension strategy)
C17 Use Systematic Comprehension strategy to find the desired code segment
C18 Take advantage of standard SQL/PL keywords and find the desired code segment
C19 Investigate the method definitions sequentially with bottom up strategy
C20 Investigate the method definitions with as-needed strategy
C21 Find the desired mathematical expression with as-needed strategy
C22 Devises a correct hypothesis that eventually lead him/her to the desired expression via

an as-needed strategy

Note. Categories related to the experimental and control group are marked differently.



www.manaraa.com

756 H. A. DURU ET AL.

TABLE 3
Coding of Each Participant’s Software Comprehension Actions in the Control Group for

Each Task

Participant No. Software Comprehension Behaviors

Control Group Task 1
1 C1-C4-C7-Success
2 C1-C2-C3-C5-C6- Fail
3 C1-C2-C3-C5-C6- Fail
4 C1-C2-C3-C5-C6- Fail
5 C1-C2-C3-C5-C6-Fail

Control Group Task 2
1 C1-C13-C6-Fail
2 C1-C11-C5-C16-Fail
3 C1-C11-C12-C15-Success
4 C1-C11-C5-Fail
5 C1-C11-C14-C5-C16-Fail

Control Group Task 3
1 C10-C1-C14-C18-Success
2 C10-C1-C3-Fail
3 C10-C1-C5-Fail
4 C10-C1-C14-C18-Success
5 C10-C1-C16-C17-C18-Success

Control Group Task 4
1 C1-C13-C7-C19-C6-Fail
2 C10-C1-C3-Fail
3 C1-C12-Fail
4 C1-C13-C7-C19-C6- Fail
5 C10-C1-C13-C12-Fail

Control Group Task 5
1 C10-C1-C13-C3-Fail
2 C10-C1-C16-C3-Fail
3 C1-C16-C7-C15-Success
4 C1-C16-C15-Success
5 C10-C1-C16-C7-C15-Success

Control Group Task 6
1 C1-C12-C21-Success
2 C1-C5-C3-Fail
3 C10-C1-C12-C21-Success
4 C10-C1-C12-C21-Success
5 C10-C1-C12-C21-Success

Control Group Task 7
1 C10-C1-C16-C22-Success
2 C1-C14-C5-Fail
3 C1-C16-C22-Success
4 C10-C1-C12-C7-Success
5 C10-C1-C12-C7-Success



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 757

TABLE 4
Coding of Each Participant’s Software Comprehension Actions in the Experiment Group

for Each Task

Software Comprehension Behaviors

Participant
No.

Stage 1 :
Comprehension of the

organization of the software

Stage 2 :
Identification of
relevant context

Stage 3:
Solution
Finding

Experiment group Task 1
1 E1- E4 E8-Success
2 E2-E3- E4 E8-Success
3 E1-E3- E4 E8-Success
4 E1 E4 E8-Success
5 E2-E3- E4 E8-Success
6 E1- E5-Fail
7 E2-E3- E4 E8-Success
8 E1- E4 E8-Success

Experiment group Task 2
1 E1 E4-E9 E8-Success
2 E2 E4-E7-E9 E10-Fail
3 E5-E9 E10-Fail
4 E1-E3 E6 E8-Success
5 E3 E4-E9 E10-Fail
6 E3 E4-E7-E9-E11 Success
7 E3 E4-E7-E9 E8-Success
8 E1-E3 E4-E9 E8-Success

Experiment group Task 3
1 E14-E1 E19-Success
2 E14-E15- E4- E19-Success
3 E14-E1- E4 Success
4 E14-E1- E4- E19-Success
5 E14-E1-E16 E7-E15 E18-Fail
6 E14-E15 E4- E19-Success
7 E1 E4- E19-Success
8 E14-E1 E4- E19-Success

Experiment group Task 4
1 E14-E1 E4 E8-Success
2 E14-E1 E4 E8-Success
3 E14-E1 E4 E8-E18-Fail
4 E14-E1 E4 E8-Success
5 E3-E1 E4 E8-Success
6 E14-E1 E4 E8-E18-Fail
7 E3-E1 E4 E8-Success
8 E14-E1 E4 E8-Success

Experiment group Task 5
1 E3-E1 E4 E19-Success
2 E14-E1 E4 E19-Success
3 E14-E1 E4 E18-Fail

(Continued)



www.manaraa.com

758 H. A. DURU ET AL.

TABLE 4
(Continued)

Software Comprehension Behaviors

Participant
No.

Stage 1 :
Comprehension of the

organization of the software

Stage 2 :
Identification of
relevant context

Stage 3:
Solution
Finding

4 E3-E1 E4 E19-Success
5 E3-E1 E4 E8-Success
6 E3-E1- E4- E19-Success
7 E3-E1 E4 E8-Success
8 E3-E1 E4 E19-Success

Experiment group Task 6
1 E14- E E4 E21-Success
2 E14- E1 E4 E21-Success
3 E14- E1 E4- E19-E21-

Success
4 E14- E1 E4 E19-E21-

Success
5 E14- E1 E6 E19-E21-

Success
6 E14-E3-E1- E4 E19-E21-

Success
7 E14- E1 E4 E19-E21-

Success
8 E14- E1 E4 E21-Success

Experiment group Task 7
1 E1- - E6-E8 Success
2 E20-E3- E4-E6-E8 Success
3 E14-E3- E4-E8 Success
4 E20-E3- E4-E6-E8 Success
5 E20-E3- E4-E8 Success
6 E14-E3- E4-E8 Success
7 E1 E6-E8 Success
8 E1 E4-E8 Success

significantly extend the time it takes to perform any of the tasks
but the last one. Some of the tasks turned out to be more difficult
than others. For instance, none of the participants in the control
group could complete Task 4, whereas 70% of the participants
in the visualization group could complete that task within the
allocated time limit. It is not obvious from the definition of the
task why such a difference was observed between both groups
and to what extent the difference can be attributed to the pres-
ence of visualization resources. In an effort to address such
questions, we expanded our quantitative analysis of outcome
measures with a qualitative analysis of screen recordings and
eye-gaze patterns of the participants.

By employing a grounded theory approach, we specifi-
cally aimed to uncover what kind of software comprehension

strategies both group members employed as they were working
on the tasks. We used the coding distributions summarized in
Tables 3 and 4 and the axial codings for each group to better
explain the statistical differences observed in Tasks 1, 2 and 4.

In Task 1, participants were asked to find the part of
the source code where the list of customers was populated.
Participants in the control group aimed to address this task by
employing a bottom-up strategy via the solution explorer win-
dow, as indicated by the appearance of codes C1, C2, and C5.
Only one participant was able to locate the correct code context
in the control group. This participant was able to successfully
complete the task by systematically reading the relevant code
context. The remaining participants in the control group ended
up following inaccurate hypotheses about what the relevant



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 759

FIG. 7. Axial coding for the combined performance of the experiment group on Task 4. (color figure available online).

FIG. 8. Axial coding for the combined performance of the control group on Task 4. (color figure available online).

code context is (code C5) and switched to the “as needed” strat-
egy to follow up on their guess. On the other hand, participants
in the experiment group exhibited two different approaches
to this task. Four participants initially attempted to match the
visual representations with the relevant parts of the source code
(codes E2 and E3). With the help of the visualizations, these par-
ticipants ended up following a more systematic approach as they
identified and explored the relevant objects, which eventually
led them to the targeted code line. The remaining subjects in the
experiment group relied on the more familiar solution explorer

to browse through the source code (indicated by E1). They made
use of the visualizations while they were systematically explor-
ing the relationships between the relevant objects (indicated by
E4). Three of the four subjects who exhibited this problem-
solving behavior also succeeded in finding the target code line.

In Task 2, participants were asked to find the code context
where the product list is filled and update the code so that
six instead of five items would be displayed. Participants in
the control group approached the task in a similar way as in
Task 1, where they searched for potentially relevant objects in



www.manaraa.com

760 H. A. DURU ET AL.

FIG. 9. Selective coding summarizing the experiment group’s overall behavior (color figure available online).

FIG. 10. Selective coding for the control group (color figure available online).

the source code with the solution explorer. Because the rele-
vant object was named in a rather deceptive way, most subjects
ended up exploring an irrelevant object (C11). Only one sub-
ject could backtrack and find the relevant object by employing
the as-needed and then the bottom-up strategies. Participants
in the visualization group were also initially misled by the
deceptive object naming convention, but they were able to back-
track quickly due to the bird’s-eye view perspective provided
by the visualizations (E7). Thus, the visualizations turned out

to be useful for identifying the relevant object in a systematic
fashion. Most participants in the visualization group were able
to find the relevant object, but three of them failed to find the
particular code line in which the modification has to be made
within the time allotted.

Task 4 involved the addition of a new search element to
the page where the list of customers was searched. The sum-
maries in Tables 3 and 4 as well as the axial coding of Task 4
(see Figures 7 and 8) for each group indicate that visualizations



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 761

turned out to be particularly useful to locate and systematically
investigate the classes that need to be modified to accomplish
this task. This task required participants to grasp how related
classes work together to perform the search operation over prod-
ucts, so that they could modify them accordingly. Hence, it
required participants to develop a deeper understanding of the
source code as compared to other tasks. The control group had
to rely on cues such as how relevant classes might have been
named to locate them in the Solution Explorer (C1). Once they
found a relevant class, they had to trace other relevant classes
referenced from the code by sequentially reading the code and
following the hyperlinks (C19). This led them to a bottom-up
strategy, but due to the number of dependencies across impli-
cated classes none of the participants in the control group could
succeed. On the other hand, most participants in the experi-
ment group started with executing the corresponding webpage
to look for cues about implicated classes (E14 and E1). Two
subjects directly started working on the visualizations and suc-
ceeded in finding the relevant objects (E3). Once candidate
objects were identified, they made use of the dependency graph
and the treemap to locate and inspect related classes altogether
(E4). Overall the visualizations made it easy for the subjects
in the experiment group to follow a systematic comprehension
strategy.

It is also informative to consider the similarities and differ-
ences observed across both groups over those tasks that did
not significantly distinguish the control group from the exper-
iment group. For instance, in Task 3, subjects were asked to fix
a bug in a search query that only returns exact matches. The
desired search behavior should output those products that par-
tially match the keywords provided by the user. Because the
subjects were experienced developers, they quickly realized that
the desired feature should include a change involved with a
SQL statement that queries the product database. A majority
of the subjects in both conditions were able to find the relevant
code context by using the IDE’s standard search feature with
keywords such as “select,” “from,” and so on, that reflect the
syntax used by such database calls (as captured by codes such
as C18, E19).

Task 5 requires subjects to make a change in the registra-
tion page so that the phone information is no longer presented
in the form. The selective codings for the control group reveal
that participants resorted to bottom-up strategies for finding and
analyzing the relevant code context. Some participants were
misled into incorrect objects, but the majority were able to back-
track and find the appropriate code context. The visualization
group continued to make use of the visualizations to aid their
search for the relevant code context. Once they identify the
context, some participants employed the as needed approach
(E19), whereas others explored the code more systematically
(E8). By this time participants in both groups had developed a
broader understanding of the source code, which is evidenced
in the way they navigate through the code to find the relevant
code context.

Task 6 asked participants to fix a mathematical statement that
computes the total cost of a given order, which produces incor-
rect results due to an incorrect casting of the variable that keeps
the total value. The task walks the subjects through a few web-
pages to help them realize the problem. Control group members
who succeeded in this task completed the task slightly faster
than the visualization group members, possibly due to the cues
provided by the walkthrough, which helped them locate the rel-
evant code context. Then, they opted for the as needed strategy
to locate where the problematic mathematical expression could
be by using the text-search feature of the solution explorer (C12,
C22). The visualization group again relied on the visualizations
to navigate through the objects initially, but once they identi-
fied the context they exhibited a similar “as needed” approach
by searching for specific expressions (E19, E21). The time they
spent over the visualizations seemed to have contributed to the
slightly higher task completion time as compared to the control
group.

Finally, Task 7 requires subjects to find what part of the code
queries the database for the product images. Most subjects in
both groups exhibited an as needed approach because the task
required a very specific location. Both groups seemed to have
benefited from being familiar with the source code at this stage
of the experiment. This may be the reason why they did not
resort to searching for specific keywords as some participants
did in Task 5.

The selective coding of visualization and control groups (see
Figures 9 and 10, respectively) allows us to make a broader
comparison between both groups in terms of their overall per-
formance across all tasks. The experiment group’s diagram
identifies three main stages in their performance. The first stage
can be named as “comprehending the organization of the soft-
ware,” where participants tried to comprehend the task and
identify the objects relevant for the task. The experiment group
did this by investigating the visualizations, executing the pro-
gram, or following the program flow. The second stage can be
named “identification of the relevant code context,” where sub-
jects located the relevant code context or object that needs to
be modified to accomplish the task. The visualization group
in general employed either systematic or as needed strategies
at this stage. The last stage can be named as “solution find-
ing” where participants followed either the systematic or as
needed approaches to accomplish the task, that is, either show
the targeted code snippet or implement the required mainte-
nance work. In particular, the affordances of the visualizations
for revealing the dependencies among relevant objects and code
snippets allowed subjects in this group to develop a deeper
understanding of the organization of the code, which is evi-
denced in their increased average accuracy as the experiment
proceeded.

In contrast to the visualization group, the selective coding
diagram of the control group does not reveal a similar degree of
orderliness (see Figure 10). Left with default code-navigation
resources provided by the IDE, participants in the control group



www.manaraa.com

762 H. A. DURU ET AL.

followed a variety of strategies to deal with each task. In partic-
ular, they tended to rely on the solution explorer to navigate the
tree of object definitions and on running the program to identify
which objects are relevant for a given maintenance task. The
complexity of the source code and the lack of a bird’s-eye view
access to the dependencies within the source code led them to
follow the “as needed” and “bottom-up” approaches in general.
Some of the subjects tried to exploit the names of the classes,
yet such semantic cues turned out to be often misleading due
to naming conventions used in the source code. Thus, subjects
tended to focus on accomplishing the specific fix itself rather
than trying to understand the general organization of the source
code. This approach often led to problems, especially for those
tasks where there are no obvious clues such as specific SQL
or math expressions. The control group’s performance had also
increased toward the end of the experiment. As they became
more familiar with the organization of the source code, partici-
pants in the control group also began to employ more systematic
strategies as opposed to bottom-up and as needed strategies.

5. CONCLUSION
Overall, our quantitative and qualitative findings indicate

that the visualizations provided by NDEPEND contributed pos-
itively to the performance of the experiment group. In general,
the visualizations guided participants to follow more systematic
software comprehension strategies by allowing them to discover
and trace the key dependencies between relevant objects and/or
code snippets. As it is evidenced in their actions, guidance for
systematic investigations allowed programmers in the experi-
ment group to develop a better understanding of the source code
as compared to the control group, which culminated into the sta-
tistically significant differences observed between both groups.
Even though the sample size is rather small and the scope of the
tasks is limited due to the constraints imposed by our controlled
experimental setting, such differences highlight the significant
influence of software visualization techniques on the software
comprehension process.

However, our results do not simply suggest that provid-
ing mere access to a set of visualizations will eliminate all
the challenges involved with software comprehension. Our
qualitative analysis of video recordings highlighted that partic-
ipants mainly use these visualizations as a resource for making
sense of the organization of the source code. The visualiza-
tions were effective to the extent participants could tailor them
to their specific needs for each task. During our experiments
subjects often needed to switch between several software com-
prehension strategies while they were working on the tasks.
Thus, coordinated use of both the conventional IDE and the
visualizations emerged as a necessity. Most participants in
the visualization group struggled to find effective ways to
coordinate the content provided by the visualizations with the
source code presented through the solution explorer interface
of the IDE. This was largely due to the need for computing

visualizations at different levels of granularity so that the rel-
evant dependencies can be inspected at the appropriate level of
analysis. Therefore, in an effort to make visualizations more
effective and useful in the context of software maintenance,
designers of software visualization tools may consider better
ways to integrate these representations into standard IDEs to
enable their coordinated use. Our findings suggest that the abil-
ity to seamlessly zoom in and out of selected parts of the source
code visualizations may better support the programmers’ needs
for noticing and tracking the most important dependencies in
the existing code. Such a level of flexibility may also pro-
vide better software support to the programmers by allowing
them to easily switch between several software comprehen-
sion strategies based on their situated, dynamic information
needs.

Finally, in this study we have also exemplified the use
of grounded theory to conduct a qualitative analysis of eye-
tracking data in the context of software comprehension. The
grounded theory approach allowed us to capture how partic-
ipants at each interface condition made use of the resources
made available to them while they were working on soft-
ware maintenance tasks. The categorizations grounded in users’
actions and eye-gaze patterns allowed us to construct process
models that revealed an important difference among the way the
two groups organized their activities. The grounded categories
enabled us to attribute this difference to the availability and pur-
poseful use of visualizations. The combined use of grounded
theory and process models in this manner may inform other
usability studies that aim to go beyond black box measures
by exploring how users interact and gradually make sense of
system interfaces in specific task contexts.

REFERENCES
Asimakopoulos, S., Fildes, R., & Dix, A. (2009). Forecasting software visual-

izations: an explorative study. Paper presented at the the 23rd British HCI
Group Annual Conference on People and Computers: Celebrating People
and Technology, October 21, Swinton, UK

Bednarik, R., &Tukiainen, R. (2006). An eye-tracking methodology for char-
acterizing program comprehension processes. Paper presented at the Eye
Tracking Research & Applications Symposium March 27-29, San Diego,
CA.

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., . . . Engler,
D. (2010). A few billion lines of code later: Using static analysis to find bugs
in the real world. Communications of the ACM, 53, 66–75.

Brooks, R. E. (1983). Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies, 18, 543–554.

Coleman, G., & O’Connor, R. (2007). Using grounded theory to under-
stand software process improvement: A study of Irish software product
companies. Information and Software Technology, 49 654–667.

Corritore, C. L., & Wiedenbeck, S. (1991). What do novices learn dur-
ing program comprehension? International Journal of Human-Computer
Interaction, 3, 199–222.

Corritore, C. L., & Wiedenbeck, S. (2001). An exploratory study of program
comprehension strategies of procedural and object-oriented programmers.
International Journal of Human-Computer Studies, 54, 1–23.

Diehl, S. (2005). Software visualization. Paper presented at the ACM ICSE’05
27th International Conference on Software Engineering, May 15–21, St.
Louis, MO.



www.manaraa.com

HOW DOES SW VISUALIZATION CONTRIBUTE TO SW COMPREHENSION? 763

Dunsmore, A., Roper, M., & Wood, M. (2000). The role of comprehension in
software inspection. Journal of Systems and Software, 52, 121–129.

Glaser, B., & Strauss, A. L. (1967). The discovery of grounded theory:
Strategies for qualitative research. Chicago, IL: Aldine.

Grant, C. A. M. (1999). Software visualization in Prolog. Cambridge, UK:
Queens College.

Jun, E., Landry, S., & Salvendy, G. (2011). A visual information processing
model to characterize interactive visualization environments. International
Journal of Human-Computer Interaction, 27, 348–363.

Kagdi, H., Yusuf, S., & Maletic, J.I. (2007). On using eye tracking in
empirical assessment of software visualizations. Paper presented at the
1st ACM International Workshop on Empirical Assessment of Software
Engineering Languages and Technologies: WEASEL Tech 2007, November
5–9, Atlanta, GA.

Karahasanovic, A., Levine, A. K., & Thomas, R. (2007). Comprehension strate-
gies and difficulties in maintaining object-oriented systems: An explorative
study. The Journal of Systems and Software 80, 1541–1559.

Koenemann, J., & Robertson, S. (1991, April–May). Expert problem solving
strategies for program comprehension. Paper presented at the ACM CHI
91 Human Factors in Computing Systems Conference, New York, NY.

Koschke, R., & Diehl, S. (2002). Software visualization for reverse engineering.
Software Visualization Lecture Notes in Computer Science, 2269, 524–527.

Lemieux, F., & Salois, M. (2006). Visualization techniques for program com-
prehension: A literature review. The 2006 Conference on New Trends in
Software Methodologies Tools and Techniques: Proceedings of the Fifth
SoMeT06, 22–47.

Littman, D. C., Pinto, J., Letovski, S., & Soloway, E. (1986). Mental mod-
els and software maintenance. In Proceeding papers presented at the First
Workshop on Empirical Studies of Programmers (pp. 80–98). Norwood, NJ:
Ablex.

Maletic, J. I., Marcus, A., & Collard, M. L. (2002). A task oriented view
of software visualization. Paper presented at the IEEE First International
Workshop on Visualizing Software for Understanding and Analysis, June
26, Paris France.

Petre, M. (2010). Mental imagery and software visualization in high-
performance software development teams. Journal of Visual Languages and
Computing 21, 171–183.

Price, B. A., Baecker, R. M., & Small, I. S. (1993). A principled taxonomy
of software visualization. Journal of Visual Languages and Computing, 4,
211–266.

Proctor, R. W., Vu, K.-P.L., & Salvendy, G. (2002). Content preparation and
management for web design: Eliciting, structuring, searching, and display-
ing information. International Journal of Human-Computer Interaction, 14,
25–92.

Shaft, T. M., & Vessey, I. (1995). The relevance of application domain knowl-
edge: the case of computer program comprehension. Information Systems
Research, 6, 286–299.

Sillito, J., Murphy, G. C., & de Volder, K. (2006). Questions programmers ask
during software evolution tasks. Paper presented at the SIGSOFT’06/FSE-
14, Fourteenth ACM SIGSOFT Symposium on Foundations of Software
Engineering, November 5–11, Portland, OR.

Sim, S. E., & Storey, M. D. (2000). A structured demonstration of program
comprehension tools. Paper presented at the Seventh Working Conference
on Reverse Engineering, November, 23–25, Brisbane, Australia.

Soloway, E., Adelson, B., & Ehrlich, B. (1988). Knowledge and processes in
the comprehension of computer programs. The Nature of Expertise, pp.
129–150.

Storey, M. A., Wong, K., & Muller, H. A. (2000). How do program under-
standing tools affect how programmers understand programs? Science of
Computer Programming, 36, 183–207.

Telea, A., Ersoy, O., & Voinea, L. (2010). Visual analytics in software main-
tenance: Challenges and opportunities. Paper presented at the International
Symposium on Visual Analytics Science and Technology.

Umphressa, D., Hendrixa, T. D., Cross, J. H., & Maghsoodloob, S. (2006).
Software visualizations for improving and measuring the comprehensibility
of source code. Science of Computer Programming, 60, 121–133.

Voinea, L., Telea, A., & Wijk, J. (2005). CVSscan: Visualization of code evo-
lution Paper presented at the ACM Symposium on Software Visualization
(Softviz 2005), May 14–15, Saint Louis, MO.

von Mayrhauser, A., & Vans, A. (1996). Identification of dynamic compre-
hension processes during large scale maintenance. IEEE Transactions on
Software Engineering, 22, 424–437.

Wettel, R., & Lanza, M. (2008). Codecity 3D visualization of large-scale soft-
ware. ICSE’08 30th International Conference on Software Engineering,
May 10–18, Leipzig, Germany.

Zuk, T., Collins, C., & Carpendale, S. (2008). How to effectively use interac-
tion logs for usability evaluation purposes. Paper presented at the BELIV
’08 Proceedings of the 2008 conference on BEyond time and errors:
novel evaluation methods for Information Visualization, April 5, Florence,
Italy.

ABOUT THE AUTHORS
Hacı Ali Duru, holds a Bsc in Computer Engineering and
an Msc on Industrial Engineering. He received his PhD from
Turkish Military Academy in Operations Research. He cur-
rently works as a Software Development Team Manger. His
primary research interests are multimodal human–computer
interaction, information visualization and data mining.

Murat Perit Çakır, Ph.D., is an assistant professor in the
Department of Cognitive Science of the Informatics Institute
at Middle East Technical University. His main research areas
involve computer-supported collaborative learning, human–
computer interaction, interaction analysis, groupware design,
math cognition, and cognitive neuroscience of learning.

Veysi İşler, Ph.D., is an associate professor in the
Department of Computer Engineering at Middle East Technical
University. His research interests cover a range of issues
related to virtual environments (VEs), such as developing
efficient algorithms for VEs, design and development issues in
applications of VEs, and qualitative evaluation of VEs.



www.manaraa.com

Copyright of International Journal of Human-Computer Interaction is the property of Taylor
& Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


